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ABSTRACT 
 
We describe two methods for forecasting a grouped time series, which provides point 
forecasts that are aggregated appropriately across different levels of the hierarchy. Using 
the regional infant mortality counts in Australia, we investigate the one-step-ahead to ten-
step-ahead point forecast accuracy, and examine statistical significance of the point 
forecast accuracy between methods. Furthermore, we introduce a novel bootstrap 
methodology for constructing point-wise prediction interval in a grouped time series, 
investigate the interval forecast accuracy, and examine the statistical significance of the 
interval forecast accuracy. 
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1 INTRODUCTION

Advances in data collection and storage have facilitated the presence of multiple time series that

are hierarchical in structure and have clusters which may be correlated. In many applications,

such multiple time series can be disaggregated into many related time series which are hierarchi-

cal in structure, based on dimensions, such as gender, geography or product type. This has led to

the problem of how to model and forecast such hierarchical time series.

In the field of forecasting, analyzing hierarchical or grouped time series has received increas-

ing attention (Dunn et al. 1971, 1976, Fliedner 2001, Marcellino et al. 2003, Athanasopoulos

et al. 2009, to name only a few). In macroeconomic, Stone et al. (1942) and Weale (1988)

disaggregate the national economic account into production, income and outlay, and capital

transactions. Production is further classified into production in Britain and production in the

rest of world; income and outlay and capital transactions are each further classified into persons,

companies, public corporations, general government, and rest of world. This is an example

of a hierarchical time series, in which the order of disaggregation is unique. In demographic

forecasting, the infant mortality counts in Australia can be disaggregated by gender; within each

gender, mortality counts can be further disaggregated by geography, e.g., state. This second

example is called a grouped time series, which can be thought of as hierarchical time series

without a unique hierarchical structure. In other words, the infant mortality counts in Australia

can also be first disaggregated by states and then by genders, thus the order is not important. In

this paper, we demonstrate the construction of prediction interval with a grouped time series.

In current statistical literature, existing approaches to grouped time-series forecasting usually

consider either a bottom-up method or an optimal combination method. The bottom-up method

involves forecasting each of the disaggregated series at the lowest level of the hierarchy, and

then using aggregation to obtain forecasts at higher levels (Kahn 1998). By using ordinary least

squares estimator in the linear regression model, Hyndman et al. (2011) introduced a statistical

method for optimally combining hierarchical forecasts. These two methods allow the forecasts
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at the bottom level to be summed consistently to the top level, without any ad-hoc adjustment.

Therefore, they can potentially improve forecast accuracy, in comparison to the independent

forecasts without any adjustment (e.g., Fair & Shiller 1990, Zellner & Tobias 2000, Marcellino

et al. 2003, Hubrich 2005).

Despite the usefulness of grouped time-series forecasting methods, to the best of our knowl-

edge, there is no or little work on the construction of a prediction interval for a grouped time

series. However, as pointed out by Chatfield (1993, 2000), it is important to provide interval

forecasts as well as point forecasts, so as to assess future uncertainty levels; enable different

strategies to be planned for the range of possible outcomes; compare forecasts from different

methods more thoroughly; and explore different scenarios based on different assumptions. This

motivates us to propose a parametric bootstrap technique for constructing a point-wise prediction

interval in a grouped time series.

The paper is organized as follows. In Section 2, we briefly review the bottom-up and optimal

combination methods that are appropriate for a grouped time series. In Section 2.4, we present a

parametric bootstrap method for constructing point-wise prediction intervals. Illustrated by the

Australian infant mortality counts described in Section 3, we investigate the one-step-ahead to

ten-step-ahead point forecast accuracy. We reveal the most accurate method in Section 4, and

carry out a hypothesis testing procedure to examine if the differences in point forecast accuracy

between methods are statistically significant. In Section 5, we investigate one-step-ahead to

ten-step-ahead interval forecast accuracy. Also, we carried out a likelihood-ratio test to examine

if the empirical coverage probability differs significantly from the nominal coverage probability

at each horizon. Conclusions are given in Section 6, along with some thoughts on how the

methods developed here might be further extended.
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2 SOME HIERARCHICAL FORECASTING METHODS

2.1 NOTATION

Let us consider a multi-level hierarchy, where top level (or level 0) has the completely aggregated

series, level 1 is the first level of disaggregation. For instance, A denotes series A at level 1; AB

denotes series B at level 2 within series A at level 1, and so on. See Figure 1 for a graphical

display of the two-level hierarchical structure.

Total

A

AA AB

B

BA BB

Figure 1. A two level hierarchical tree diagram.

Denote Yt as the aggregate of all series at time t = 1, 2, . . . , n. As shown in Figure 1, we have

YTotal,t = YA,t + YB,t, YA,t = YAA,t + YAB,t.

Therefore, observations at higher levels can be obtained by summing the series below. Alterna-

tively, we can also express the hierarchy using a matrix notation. Let Yt =
[
Yt,Y

′
1,t, . . . ,Y

′
K,t

]′
,

where Ys,t represents the vector of all observations at level s at time t, and ′ denotes the matrix

transpose. Note that

Yt = SYK,t,

where S is a “summing” matrix of order m × mK , and m represents the total number of series

(22 + 21 + 20 = 7 for the symmetric hierarchy in Figure 1) and mK represents the total number of

bottom-level series (22 = 4). The summing matrix S, which delineates how the bottom-level

series are aggregated, is consistent with the hierarchical structure. For the hierarchy in Figure 1,

3



we have 

Yt

YA,t

YB,t

YAA,t

YAB,t

YBA,t

YBB,t



=



1 1 1 1

1 1 0 0

0 0 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


︸             ︷︷             ︸

S



YAA,t

YAB,t

YBA,t

YBB,t



.

Based on the information available up to and including time n, we are interested in computing

forecasts for each series at each level, giving m independent (or base) forecasts for the forecasting

period n + h, . . . , n + w, where h represents the forecast horizon and w ≥ h represents the last

year of the forecasting period. We denote Ŷ0,h as the h-step-ahead base forecast of the total

series in the forecasting period, ŶA,h as the h-step-ahead forecast of the series A, ŶAA,h as the

h-step-ahead forecast of the series AA generated for each series in the hierarchy using a suitable

forecasting method, such as exponential smoothing (Hyndman et al. 2008). These base forecasts

are then combined in such ways to produce final forecasts for the whole hierarchy that aggregate

in a manner which is consistent with the structure of the hierarchy. We refer to these as revised

forecasts and denote them as Y0,h and Y s,h for level s = 1, . . . ,K.

There are a number of ways of combining the base forecasts in order to obtain revised

forecasts. The following subsections discuss two possibilities.

2.2 BOTTOM-UP METHOD

One of the commonly used methods to hierarchical forecasting is the bottom-up method (Kinney

1971, Dangerfield & Morris 1992, Zellner & Tobias 2000). This method involves first generating

independent forecasts for each series at the bottom level of the hierarchy and then aggregating

these upwards to produce revised forecasts for the whole hierarchy. As an example, let us
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consider the hierarchy of Figure 1. We first generate h-step-ahead independent forecasts for the

bottom-level series, namely ŶAA,h, ŶAB,h, ŶBA,h, ŶBB,h. Aggregating these up the hierarchy, we get

h-step-ahead forecasts for the rest of series:

YA,h = YAA,h + YAB,h,

YB,h = YBA,h + YBB,h,

Yh = YA,h + YB,h.

The revised forecasts for the bottom-level series are the same as the base forecasts in the

bottom-up method (i.e., YAA,h = ŶAA,h).

The bottom-up method can also be expressed by the summing matrix and we write

Y h = SŶK,h,

where Y h = [Y0,h,Y
′

1,h, . . . ,Y
′

K,h]
′

represents the revised forecasts for the whole hierarchy, and

ŶK,h represents the bottom-level forecasts.

The main advantage of this bottom-up method is that no information is lost due to aggregation.

On the other hand, it may lead to inaccurate forecasts of the top-level series, when there are

missing or noisy data at the bottom level (see for example, Shlifer & Wolff 1979, Schwarzkopf

et al. 1988).

2.3 OPTIMAL COMBINATION METHOD

This method involves first generating base forecasts for each series. As these base forecasts

are independently generated, they will not be ‘aggregate consistent’ (i.e., they will not sum to

the group structure). The optimal combination method optimally combines the base forecasts

through linear regression and generates a set of revised forecasts that are as close as possible to

the independent forecasts but also aggregate consistently within the group. The essential idea is
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derived from the representation of h-step-ahead base forecasts for the whole of the hierarchy by

linear regression. In general,

Ŷh = Sβh + εh,

where Ŷh is a vector of the h-step-ahead base forecasts for the whole hierarchy, stacked in the

same order as for Yt; βh = E
[
YK,n+h

∣∣∣Y1, . . . ,Yn

]
is the unknown mean of the base forecasts

of the bottom level K, εh has zero mean and unknown covariance matrix Σh. Note that εh

represents the error in the above regression and should not be confused with the h-step-ahead

forecast error.

Provided the base forecasts approximately satisfy the group aggregation structure (which

should occur for any reasonable set of forecasts), the errors approximately satisfy the same

aggregation structure as the data. That is, εh ≈ SεK,h, where εK,h represents the forecast errors

in the bottom level. Under this assumption, Hyndman et al. (2011) show that the best linear

unbiased estimator for βh is

β̂h =
(
S′S

)−1 S
′
Ŷh. (1)

For the derivation of (1), consult Hyndman et al. (2011, Theorem 1). The revised forecasts are

then given by

Y h = S
(
S′S

)−1 S
′
Ŷh,

which does not depend on Σh.

The main advantage of this method is that it provides unbiased revised forecasts. However,

its main weakness is the assumption that the errors approximately satisfy the same aggregation

structure as the data.

2.4 INTERVAL FORECAST

Bootstrap techniques become important tools for assessing the parameter uncertainty, since the

seminal work by Efron (1979). The monographs by Hall (1992) and Efron & Tibshirani (1993)
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provide detailed overview on the topic of bootstrap, while Kreiss & Paparoditis (2011) present

a recent survey. Using a bootstrap technique, we take up the call of Hyndman et al. (2011) by

constructing the point-wise prediction interval for a grouped time series. Our proposed method

fits within the framework of parametric bootstrapping, where we produce B samples of forecasts

from the fitted exponential smoothing model for each series in the bottom level. By the principle

of parametric bootstrapping, the bootstrap samples are capable of mimicking the correlation

within each series. Based on these B bootstrap forecasts, we assess the variability of point

forecasts by constructing the prediction intervals using quantiles. As pointed out by Davidson &

MacKinnon (2000), B = 399 would seem to be the minimum number of bootstrap replications

for a test at the 0.05 level of significance.

Computationally, the simulate.ets function in the forecast package (Hyndman 2013) was

utilized for simulating a number of replications of the bottom-level forecasts, from which we

can then construct the series at the upper levels. By no means is exponential smoothing the

only univariate time-series forecasting method, but its simplicity often provides a good forecast

accuracy (see for example, Makridakis & Hibon 2000). As also noticed by Schwarzkopf et al.

(1988), the independent forecasts obtained from exponential smoothing are fairly robust in

correcting for possible outliers.

3 DATA SET

We apply the two grouped time-series forecasting methods to Australian infant mortality counts

across different genders and states. For each series, we have yearly observations on the number

of infant mortality counts from 1933 to 2003. This data set was obtained from the Australian

Social Science Data Archive (http://www.assda.edu.au/), and is also publicly available

in the hts package (Hyndman et al. 2013) in the ©©©©©RR language (R Core Team 2013). Based on

these observations, we are interested in forecasting regional infant mortality counts from 2004

to 2013.
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The structure of the hierarchy is displayed in Table 1. At the top level, we have aggregated

total infant mortality counts for the whole of Australia. At level 1, we can split this total count

by gender, although we note the possibility of splitting the total counts by regions. In the third

level, the total counts are disaggregated by the states and territories of Australia: New South

Wales (NSW), Victoria (VIC), Queensland (QLD), South Australia (SA), Western Australia

(WA), Northern Territory (NT), Australian Capital Territory and Overseas Territory (ACTOT),

and Tasmania (TAS). In the bottom level, the total counts are disaggregated by the states and

territories of Australia for each gender. This gives 16 series at the bottom level, and 27 series in

total.

Level Number of series
Australia 1
Gender 2
State 8
Gender × State 16
Total 27

Table 1. Hierarchy of Australian infant mortality counts.

Figure 2 shows the forecasts of regional mortality counts, using the bottom-up method. The

forecasts indicate a continuing decline in infant mortality counts, due largely to improved health

services. Moreover, the male infant mortality counts are higher than the female infant mortality

counts. This confirms the same finding as Drevenstedt et al. (2008).

4 RESULTS OF POINT FORECAST

For each series given in Table 1, we select an optimal exponential smoothing model based

on Akaike’s (1974) Information Criterion. We then re-estimate the parameters of the model

using a so-called rolling window approach, beginning with the model fitted using the first 61

observations (from 1933 to 1993). Forecasts from the fitted model are produced for up to ten

steps ahead. We iterate this process, by increasing the sample size by one year until the end

of data period in 2003. This process produces 10 one-step-ahead forecasts, 9 two-step-ahead
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Figure 2. Point forecasts of a grouped time series using the bottom-up method. Based on the
historical data from 1933 to 2003, we forecast the infant mortality counts across genders and states
from 2004 to 2013.

forecasts, . . . , and 1 ten-step-ahead forecast. We use these to evaluate the out-of-sample point

forecast accuracy.

In order to compare point forecast accuracy between the two grouped time-series forecasting

methods, we use the mean absolute percentage error (MAPE). The MAPE is the average of

percentage error, across years in the forecasting period. For each series j, it can be defined as

MAPE j,h =
1

(11 − h)

n+(10−h)∑

t=n

∣∣∣∣∣∣∣
Yt+h, j − Ŷt+h, j

Yt+h, j

∣∣∣∣∣∣∣
× 100, h = 1, . . . , 10.

By averaging MAPE j,h across 27 series, we obtain an overall assessment of the point forecast
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accuracy.

Table 2 contains the MAPEh for each level using the two grouped time-series methods,

and an independent (base) forecasting method without reconciling forecasts. The bold entries

highlight the method that performs best for the corresponding level and forecast horizon, based

on the smallest MAPE. The last column contains the average MAPE across all the forecast

horizons.

Forecast horizon (h)
1 2 3 4 5 6 7 8 9 10 Mean

Top level: Australia (1 series)
Base 4.12 4.89 5.06 7.21 9.40 7.97 6.95 9.08 8.43 6.66 6.98
Bottom-up 4.64 5.09 5.37 7.79 6.83 4.25 4.98 4.68 8.23 16.89 6.88
Combination 4.50 5.09 4.81 7.33 6.16 3.22 2.36 0.53 2.00 1.29 3.73
Level 1: Gender (2 series)
Base 5.62 6.50 7.57 9.57 10.95 12.60 15.65 18.04 18.39 15.85 12.07
Bottom-up 5.24 5.13 5.73 7.63 7.59 5.08 5.73 5.81 8.01 16.31 7.23
Combination 4.84 5.20 6.07 7.44 7.01 5.94 3.77 5.94 5.96 12.33 6.45
Level 2 : State (8 series)
Base 13.54 15.50 17.27 19.45 22.30 24.20 28.10 29.98 31.09 37.96 23.94
Bottom-up 13.81 15.09 16.94 19.33 22.36 24.17 28.63 31.94 33.04 40.55 24.59
Combination 14.16 15.26 15.90 18.21 20.87 23.55 23.60 27.30 28.85 40.47 22.82
Bottom level: Gender × State (16 series)
Base 19.08 21.74 24.77 27.45 30.42 32.66 36.43 40.09 37.00 44.50 31.41
Bottom-up 19.08 21.74 24.77 27.45 30.42 32.66 36.43 40.09 37.00 44.50 31.41
Combination 18.95 20.32 22.38 23.37 28.25 32.76 32.89 38.31 42.10 54.96 31.43
Average across all levels : (27 series)
Base 10.59 12.16 13.67 15.92 18.27 19.36 21.78 24.30 23.73 26.24 18.60
Bottom-up 10.69 11.76 13.20 15.55 16.80 16.54 18.94 20.63 21.57 29.56 17.53
Combination 10.61 11.47 12.29 14.09 15.57 16.37 15.66 18.02 19.73 27.26 16.11

Table 2. MAPE for out-of-sample forecasts of the grouped time-series methods applied to Australian
infant mortality counts. The bold entries highlight the method that performs best for the corresponding
level and forecast horizon.

From this empirical study, we find that the optimal combination method and bottom-up

method outperform the independent forecasts at the top two levels. In the top level, the opti-

mal combination method performs the best for long-term forecasts, whereas the independent
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method generally performs the best for short-term forecast horizons. In the bottom level, the

independent forecasts and bottom-up forecasts are the same. Based on the overall MAPE across

all hierarchical levels, the good performance of the bottom-up and optimal combination methods

can be attributed to the fact that the data have strong trends, even at the bottom level. With more

noisy data, it may not be easy to extract the signal at the bottom level, and this may lead to

inferior performance of the grouped time-series methods.

To formally test whether the differences in forecast accuracy among the alternative methods

are significant, we perform the Friedman’s (1937) test. Friedman’s test is a nonparametric analog

of variance for a randomized block design, which can be considered as nonparametric version

of a one-way ANOVA with repeated measures. The errors are ranked from the smallest to the

largest across the series and the sum of the ranks for each method is compared. When two errors

are the same, a mean rank is then assigned. These ranks, denoted by R j, are given in Table 3. If

the forecast accuracy is different among methods, there would be a significant difference in the

sum of the ranks of at least one method.

The Friedman’s test statistic is given by

12
HK(K + 1)

∑
R2

j − 3H(K + 1),

where K = 3 is the number of methods considered and H = 10 is the number of horizons. Fried-

man’s test is a procedure based on within-block ranks, and the test statistics has approximately a

χ2
K−1 distribution with K − 1 degrees of freedom, when the null hypothesis is true (see Demšar

2006, for details). By comparing the Friedman test statistics with the critical values, there is a

significant difference among methods in the top two levels; see Table 3.

Having identified the statistical significance among methods, we perform the Nemenyi’s

(1963) test, which is a post-hoc pairwise test intended to determine which method is signifi-

cantly different from the others. The Nemenyi test is two-sided with the null hypothesis being

two methods give similar point forecast accuracy. The forecast accuracy of two methods is
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Forecast horizon (h)
1 2 3 4 5 6 7 8 9 10 R j R2

j
∑

R2
j F

Top level: Australia (1 series)
Base 1 1 2 1 3 3 3 3 3 2 22 484
Bottom-up 3 2.5 3 3 2 2 2 2 2 3 24.5 600.25
Combination 2 2.5 1 2 1 1 1 1 1 1 13.5 182.25
Test statistics 1266.5 6.65
Level 1: Gender (2 series)
Base 3 3 3 3 3 3 3 3 3 2 29 841
Bottom-up 2 1 1 2 2 1 2 1 2 3 17 289
Combination 1 2 2 1 1 2 1 2 1 1 14 196
Test statistics 1326 12.6
Level 2 : State (8 series)
Base 1 3 3 3 2 3 2 2 2 1 22 484
Bottom-up 2 1 2 2 3 2 3 3 3 3 24 576
Combination 3 2 1 1 1 1 1 1 1 2 14 196
Test statistics 1256 5.6
Bottom level: Gender × State (16 series)
Base 2.5 2.5 2.5 2.5 2.5 1.5 2.5 2.5 1.5 1.5 22 484
Bottom-up 2.5 2.5 2.5 2.5 2.5 1.5 2.5 2.5 1.5 1.5 22 484
Combination 1 1 1 1 1 3 1 1 3 3 16 256
Test statistics 1224 2.4

Table 3. Ranks of forecast errors by method and horizon. The critical value is χ2
0.95,2 = 5.99.

significantly different if the corresponding average ranks differ by at least the critical difference

qα

√
K(K + 1)

6H
,

where critical values qα are given in (Demšar 2006, Table 5). Based on the test statistics, we can

calculate its corresponding p-value shown in Table 4. We conclude that

(1) at the top level, the bottom-up method differs significantly from the optimal combination

method;

(2) at the first level, the bottom-up and optimal combination methods differ significantly from

the independent forecasting method.
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Base Optimal combination
Top level: Australia
Optimal combination 0.1316 —
Bottom-up 0.8381 0.0341
Level 1: Gender
Optimal combination 0.0023 —
Bottom-up 0.0199 0.7805

Table 4. p-values of the Nemenyi’s test statistics to test statistical significance of the point forecast
accuracy among methods.

5 RESULTS OF INTERVAL FORECAST

As described in Section 2.4, we construct point-wise prediction interval using a parametric

bootstrap approach. This approach produces a number of bootstrapped point forecasts from

the fitted exponential smoothing model for each series in the bottom level. Based on these B

bootstrap forecasts, we assess the variability of point forecasts by constructing the prediction

intervals using quantiles. For instance, Figure 3 displays the 80% point-wise prediction interval

of the regional infant mortality counts from 2004 to 2013 at the top two levels.
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Figure 3. 80% point-wise prediction intervals of a hierarchical time series.

Given a sample path {Y1,Y2, . . . ,Yn} where Yt is a column vector of series across the entire

hierarchy, we constructed the h-step-ahead interval forecasts, with the lower bound denoted by
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Ln+h|n(p) and upper bound denoted by Un+h|n(p), where p is the nominal coverage probability.

Given the holdout time series in the forecasting period and the point-wise interval forecasts, the

indicator variable is defined as

In+h, j =



1 if Yn+h, j ∈ [Ln+h|n, j(p),Un+h|n, j(p)];

0 if Yn+h, j < [Ln+h|n, j(p),Un+h|n, j(p)], j = 1, . . . ,m,

where m = 27 represents the total number of series in a hierarchy. Let In+h be a column vector of

indicator variables for h-step-ahead forecast, and Yn+h be a column vector of series across the en-

tire hierarchy. In our data set,Yn+h =
[
Yn+h,total,Yn+h,female,Yn+h,male, Yn+h,femalensw , . . . ,Yn+h,femaletas ,Yn+h,malensw , . . . ,Yn+h,maletas

]
.

Recall that the training sample period is from 1933 to 1993 (observations 1 to n), while the

testing sample period is from 1994 to 2003 (observations n + 1, . . . , n + 10). For each forecast

horizon, the empirical coverage probability is defined as

1 −
∑n+(10−h)

l=n

∑m
j=1 Il+h, j

m × (11 − h)
, h = 1, . . . , 10.

In Table 5, we present the empirical coverage probabilities for the one-step-ahead to ten-step-

ahead interval forecasts, using the bottom-up method. From h = 1 to h = 10, we find that the

empirical coverage probabilities are reasonably close to the nominal coverage probability of 0.8.

Forecast horizon 1 2 3 4 5 6 7 8 9 10
Empirical coverage 0.71 0.72 0.75 0.69 0.64 0.73 0.72 0.69 0.72 0.74

Table 5. Empirical coverage probabilities for the one-step-ahead to ten-step-ahead interval forecasts
using the bottom-up method, at the nominal coverage probability of 0.8.

To formally test if the empirical coverage probability differs from the nominal coverage

probability significantly, we performed log likelihood-ratio (LR) test statistics (see Christoffersen

1998, for detail). Christoffersen (1998) proposed a test for unconditional coverage, a test for

independence of indicator sequence, and a joint test of conditional coverage and independence.

It is the joint test that we applied to our one-step-ahead to ten-step-ahead indicator sequence.
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At the nominal coverage probability of 0.8, the log LR test statistics are given in Table 6.

The log LR test statistics are compared with the critical value of χ2
0.95,2 = 5.99 at the 5%

level of significance. The log LR test statistics is greater than the critical value, only when

h = 5. Therefore, overall there is strong evidence that the parametric bootstrap method has good

coverage properties.

Forecast horizon 1 2 3 4 5 6 7 8 9 10
Log LR test statistics 5.73 4.55 1.87 3.24 9.23 5.28 5.94 4.03 2.55 5.01

Table 6. Log likelihood-ratio test statistics for the one-step-ahead to ten-step-ahead interval forecasts
at the nominal coverage probability of 0.8. The critical value is 5.99 at the 5% level of significance.

6 CONCLUSIONS

This article begins by revisiting two methods for modeling and forecasting a grouped time series.

The bottom-up method models and forecasts data series at the bottom level, and then aggregates

to the top level. The optimal combination method considers the problem of group forecasting

from a regression perspective, and it uses the ordinary least squares to find the optimal regression

coefficients, based on which forecasts are obtained.

Illustrated by the regional infant mortality counts in Australia, we demonstrate the use of

bottom-up method for producing point and interval forecasts of mortality counts from 2004 to

2013. Furthermore, we compared the one-step-ahead to ten-step-ahead point forecast accuracy

of each of the grouped time-series methods, and found that the optimal combination method

performs the best with the smallest MAPE, averaged across different levels. In order to examine

if the differences among methods are statistically significant, we carried out the Friedman’s

test and Nemenyi’s test across different levels of the hierarchy. At the top level, the bottom-up

method differs significantly from the optimal combination method, whereas the bottom-up and

optimal combination methods differ significantly from the independent forecasting method at

the first level. For the lower levels, there is no significant difference among methods.
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The main contribution of this paper is to propose a parametric bootstrap method for construct-

ing the point-wise prediction intervals. For one-step-ahead to ten-step-ahead interval forecasts,

our method produces the empirical coverage probabilities that are close to the nominal coverage

probability. A log likelihood-ratio test is implemented to examine if the empirical coverage

probability differs significantly from the nominal coverage probability. At the short and long

forecast horizons, we infer that the empirical coverage probability does not differ significantly

from the nominal coverage probability.

There are many ways in which the paper can be further extended, and we briefly mention a

few. First, we demonstrated the group time-series forecasting methods by the infant mortality

counts in Australia, but the methodology presented can easily be extended to forecast age-specific

mortality counts by adding age as an additional level of the group. Second, the methodology can

be applied to cause-specific mortality, considered in Murray & Lopez (1997) and Girosi & King

(2008). Third, since the forecast accuracy depends on the unknown signal-to-noise ratio of the

bottom-level series, the forecast accuracy may be improved by averaging the forecasts produced

by different hierarchical forecasting methods. Finally, the idea of grouped time series can be

extended to functional time series, where each series is a time series of functions.

Implementation of the two grouped time-series methods are straightforward using the readily

available ©©©©©RR package hts (Hyndman et al. 2013). This package provides the point forecasts,

while the computational code for constructing point-wise prediction interval can be obtained

upon request from the authors.
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